

www.elsevier.de/jplph

Methyl jasmonate is a more effective senescence-promoting factor in *Cucurbita pepo* (zucchini) cotyledons when compared with darkness at the early stage of senescence

Kalina Ananieva^a, Evgueni D. Ananiev^a, Kiril Mishev^a, Katya Georgieva^a, Jiri Malbeck^b, Miroslav Kamínek^b, Johannes Van Staden^{c,*}

^aAcad. M. Popov Institute of Plant Physiology, Acad. G. Bonchev Str., Bl.21, Sofia 1113, Bulgaria ^bInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135,

CZ-16502 Prague 6, Czech Republic

^cResearch Centre for Plant Growth and Development, School of Biological and Conservation Sciences,

University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, Republic of South Africa

Received 18 April 2006; accepted 4 July 2006

KEYWORDS Cotyledons; Cytokinins; Dark treatment; Methyl jasmonate;

Senescence

Summary

The effects of short-term darkening and methyl jasmonate (MeJA) on cotyledon senescence were studied 24h after transfer of intact 7-day-old *Cucurbita pepo* (zucchini) seedlings to darkness or spraying with 100 μ M MeJA. The jasmonate inhibitory effect on chlorophyll content and chloroplast transcriptional activity was stronger compared with darkness. Further, MeJA reduced the photosynthetic rate whereas darkness did not affect photosynthesis. Neither stress factor affected the photochemical quantum efficiency of photosystem II (PSII) estimated by the variable fluorescence (F_v)/maximal fluorescence (F_m) ratio, suggesting the existence of mechanisms protecting the functional activity of PSII at earlier stages of senescence, thus making this parameter more stable compared to others used to quantify senescence. Both stress factors caused a decrease in the content of physiologically active cytokinins, especially *trans*-zeatin (Z), with the jasmonate effect being much more pronounced when compared to darkness. Our results indicate that MeJA is a

Abbreviations: *atpB*, gene coding for the plastid ATP synthase beta subunit; CK, cytokinin; DHZ, dihydrozeatin; IP, N⁶-(2-isopentenyl)adenine; iPR, N⁶-(2-isopentenyl)adenine 9-riboside; JIPs, jasmonate-induced proteins; *lhb*Cl, gene coding for the type III light-harvesting chlorophyll-*a/b*-binding protein; LSU, the large subunit of Rubisco; MeJA, methyl jasmonate; *psaA* and *psaB*, genes coding for photosystem I P₇₀₀ apoproteins A1 and A2, respectively; *rbcL*, gene coding for the large subunit of Rubisco; *rbcS*, gene coding for the small subunit of Rubisco; Rubisco, ribulose-1, 5-biphosphate carboxylase/oxygenase; SAGs, senescence-associated genes; *Z*, *trans*-zeatin; ZR, *trans*-zeatin 9-riboside.

*Corresponding author. Tel.: +27 33 260 5130; fax: +27 33 260 5897.

E-mail address: rcpgd@ukzn.ac.za (J. Van Staden).

0176-1617/\$ - see front matter @ 2006 Elsevier GmbH. All rights reserved. doi:10.1016/j.jplph.2006.07.008

more potent inducer of senescence in zucchini cotyledons, at least within the relatively short period of the 24 h treatment. This is likely due to its stronger down-regulatory effect on the levels of physiologically active cytokinins. © 2006 Elsevier GmbH. All rights reserved.

Introduction

Leaf senescence is a highly regulated, ordered series of biochemical and physiological events comprising the final stage of leaf development (Noodén, 1988). During leaf senescence, cells undergo changes in metabolism and cellular structure. It is well known that the chloroplast is the first organelle that is broken down structurally during senescence. The process of chloroplast disassembly takes place in parallel with down-regulation of its functional activity (Smart, 1994; Gan, 2004). Chlorophyll degradation leads to a sharp decrease in leaf photosynthetic capacity. The anabolism of macromolecules such as proteins, lipids, and nucleic acids (DNA and RNA) is gradually replaced by their catabolism. In addition, the vast majority of genes that are expressed in young, photosynthetically active leaves and are related to photosynthesis and protein synthesis are down regulated at the onset of senescence, which is accompanied by the upregulation of specific senescence-associated genes (SAGs) (Smart, 1994; Buchanan-Wollaston, 1997; Nam, 1997; Gan, 2004). Thus, senescence-specific molecular markers, e.g. SAG12, a gene encoding a cysteine proteinase in Arabidopsis, have been widely used to distinguish leaf senescence from other processes leading to cell death (Weaver et al., 1998; Pontier et al., 1999).

It is well known that cytokinins (CKs) are the major senescence-inhibiting hormones (Smart, 1994; Gan, 2004). The levels of some CKs in the leaf decrease with the progression of leaf senescence (van Staden et al., 1988; Gan and Amasino, 1996). Our previous results on endogenous CK levels during natural senescence of intact Cucurbita pepo (zucchini) cotyledons showed that the concentrations of the physiologically active CK bases, especially trans-zeatin, its riboside, nucleotide as well as cis-isomers of zeatin derivatives decreased between the 1st and 5th week of cultivation. In contrast, the levels of storage CK O-glucosides and physiologically inactive CK 7- and 9-glucosides increased with cotyledon senescence (Ananieva et al., 2004a). Further evidence confirming the regulatory role of CKs in leaf senescence is based on data showing that senescence can be delayed after exogenous application of CKs (van Staden et al., 1988; Noodén and Letham, 1993) or due to overproduction of CKs in transgenic plants transformed by the CK biosynthesis gene, isopentenyl transferase (*ipt*) (Smart et al., 1991; Gan and Amasino, 1995; Jordi et al., 2000).

Senescence is either genetically induced in an age-dependent manner or can be prematurely initiated in response to various sub-lethal environmental stresses caused by extreme temperatures, drought, shading, nutrient deficiency, pathogen infection, and wounding (Smart, 1994). Senescence can also be induced by different artificial methods such as detaching leaves, transfer of plants to darkness or application of senescence promoting plant growth substances. It has been shown previously that darkness can induce senescence in detached leaves (Biswal et al., 1983; Weaver et al., 1998) or intact leaves and cotyledons following transfer of whole plants to darkness (Biswal and Biswal, 1984; Oh et al., 1996; Weaver et al., 1998). Recently, evidence was presented that senescence is induced in individually darkened leaves, but delayed in whole darkened plants (Weaver and Amasino, 2001). It was suggested that the genes induced during both natural and whole plant darkinduced senescence may be primarily stress-responsive (Weaver et al., 1998; Weaver and Amasino, 2001). In contrast to true leaves, cotyledons do appear to senesce when whole seedlings are placed in darkness, thus implying differential regulation of senescence in true leaves and cotyledons (Weaver and Amasino, 2001). We have recently shown that similar to natural senescence, there was a progressive reduction in chlorophyll content accompanied by a decrease in physiologically active CKs and their nucleotides in C. pepo (zucchini) cotyledons following transfer of whole seedlings into darkness for 2 and 5 days (Ananieva et al., 2004a). In contrast with natural senescence, the storage CK O-glucosides decreased under dark conditions, suggesting differential metabolic regulation of endogenous CK levels during natural and darkinduced senescence of zucchini cotyledons.

Jasmonic acid (JA) and its derivative methyl jasmonate (MeJA) are powerful promoters of leaf senescence upon exogenous application (for reviews see Creelman and Mullet, 1997; Wasternack and Hause, 2002). The effectiveness of exogenous MeJA

in promoting leaf senescence has been shown in different plants, such as Arabidopsis wild-type and mutant leaves (Oh et al., 1996; Weaver et al., 1998; Woo et al., 2001) and barley leaf segments (Weidhase et al., 1987; Reinbothe et al., 1993a; Reinbothe et al., 1997). We have recently reported that the ability of MeJA to promote senescence in intact C. pepo (zucchini) cotyledons is at least partially due to down-regulation of endogenous CK levels and interconversions between their physiologically active and inactive forms (Ananieva et al., 2004b). Genes involved in JA biosynthesis were shown to be differentially up-regulated during leaf senescence of Arabidopsis resulting in a 4-fold increase in JA content in senescing leaves, thus supporting also a role of endogenous JA in Arabidopsis leaf senescence (He et al., 2002). In addition, the JA-induced leaf yellowing was accompanied by the expression of several senescenceassociated genes including the senescence-specific molecular marker gene SAG12. On the other hand, evidence exists that transgenic potato plants expressing a flax allene oxide synthase gene (AOS) overproduce JA without visible symptoms of early senescence (Harms et al., 1995). Nevertheless, such data may not necessarily contradict the regulatory role of jasmonates in promoting senescence.

In this paper, we extend our earlier studies on the mechanisms of induced senescence in cotyledons by comparing the promoting effects of short-term darkening and MeJA treatment of intact 7-day-old *C. pepo* (zucchini) seedlings on cotyledon senescence. More specifically, we studied the ability of the two stress factors to promote some early symptoms of senescence in relation to their effects on endogenous CK levels.

Materials and methods

Plant material and experimental scheme

Seeds of *Cucurbita pepo* L. (zucchini), cv. Cocozelle, were germinated on moistened filter paper for 96 h in darkness at 28 °C. The 4-day-old etiolated seedlings with a hypocotyl length of 4–6 cm were grown further on a nutrient solution (Yamagishi and Yamamoto, 1994) in a growth chamber at a photon flux density of $100 \,\mu\text{mol}\,\text{m}^{-2}\,\text{s}^{-1}$, 26 ± 2 °C, relative humidity 70% and a 12 h day/night photoperiod. Seven-day-old seedlings grown in the light for three days were either transferred to darkness or sprayed with an aqueous solution of MeJA applied at a concentration of $100 \,\mu\text{M}$. All measurements were done 24 h after treatment.

Chlorophyll determination

Chlorophyll was extracted in *N*, *N*-dimethylformamide as described by Moran and Porath (1980). Chlorophyll content was analyzed using a Cary 50 Conc UV-Visible spectrophotometer (Varian Pty Ltd, Victoria, Australia) and calculations were based on the extinction coefficients proposed by Inskeep and Bloom (1985). Each value represents the mean of three different experiments.

Net photosynthesis

Net photosynthetic rate was measured with a portable photosynthesis apparatus (LI-6400, Li Cor, Lincoln, NE, USA) at quantum flux density of $500 \,\mu$ mol m⁻² s⁻¹ PAR. Data were statistically processed using Systat 7.0. Each value represents the mean of three different experiments.

Chlorophyll fluorescence measurements

Chlorophyll fluorescence emission from the adaxial side of the leaf was measured with a pulse amplitude modulation fluorometer (PAM 101-103, Walz, Effeltrich, Germany). The initial fluorescence yield (F_0) was excited by weak red modulated light (0.075 µmol m⁻² s⁻¹ PPFD), and the maximum total fluorescence yield (F_m) induced by a saturating white light pulse (1 s, over 3500 µmol m⁻² s⁻¹ PPFD, by Schott KL 1500 light source), were determined. Each value represents the mean of three different experiments.

Chloroplast isolation and run-on transcription assay

Intact chloroplasts were isolated from zucchini cotyledons using the discontinous gradient of Percoll (Amersham BiosciencesAB). Briefly, cotyledons were homogenized with grinding buffer containing 50 mM Hepes-KOH (pH 6.8), 0.33 M sorbitol, 2 mM MgCl₂, 2 mM MnCl₂, 1.7 mM Na₄P₂O₇, 2 mM dithiothreitol (DTT) and 0.2 mM EDTA (Deng and Gruissem, 1995). The homogenate was filtered through two layers of Miracloth and centrifuged at 6000g for 30s at 4°C. The pellet containing chloroplasts was resuspended in grinding buffer and suspension was layered on a 40-80% Percoll gradient made after dissolving PCBF solution containing 100% Percoll, 3% polyethylene glycol (Mw 6000, w/v), 1% BSA (w/v) and 1% Ficoll (w/v). After centrifugation (6000g, 20 min, 4°C) plastids banded on the 80% Percoll layer were collected, washed twice in the grinding buffer and resuspended in a buffer containing 50 mM Hepes-KOH (pH 8.0) and 0.33 M sorbitol. The intactness of the chloroplasts was verified by phase contrast microscopy (Axiovert 25, Carl Zeiss lena, Germany) and the chloroplast number was determined using a hemocytometer according to Mullet and Klein (1987).

Run-on transcription was measured as described by Mullet and Klein (1987). All reactions were performed in a total volume of 25 uL containing 50 mM Hepes-KOH (pH 8.0), 25 mM potassium 10 mM dithiothreitol, 10 mM MgCl₂, acetate, 125 μ M each of unlabeled ATP, GTP and CTP, 10 μ M unlabeled UTP and 10 μ Ci [³H] UTP (specific activity 43 Cimmol⁻¹, Amersham) and 2.6×10^7 plastids. Transcription was carried out at 23 °C for 10 min and the reaction was stopped by spotting the reaction mixtures onto 50 µM EDTA-presoaked DE-81 Whatman paper. The filters were extensively washed in 5% Na₂HPO₄, followed by distilled water, 96% ethanol and finally in diethyl ether according to Hallick et al. (1976). Filters were air-dried and counted using a liquid scintillation counter (Beckman LS 1801, Irvine, USA). Each value represents the mean of three different experiments.

CK analysis

Cytokinins were extracted and purified using dual mode solid phase extraction (Dobrev and Kamínek, 2002) and determined by HPLC-MS as described elsewhere (Ananieva et al., 2004a). Briefly, frozen cotyledons (1.5g) were homogenized and extracted overnight in cold methanol:water:formic acid (15:4:1,v/v/v). Following centrifugation (15000 g,4°C, 20 min) parts of lipids were removed from the supernatant by filtration through Sep-Pack †C18 cartridge. After evaporation to near dryness, the residue was dissolved in 5 mL 1 M formic acid and applied to an Oasis MCX column (150 mg reversephase cation-exchange sorbent). After washing the column with 5ml of formic acid and 5mL of methanol CK nucleotides were eluted with 5 mL 0.35 M NH₄OH. CK bases, ribosides, and glucosides were eluted with 5 mL 0.35 M NH₄OH in 60% (v/v) methanol. The eluate containing CK bases, ribosides and glucosides was evaporated to dryness using a Speed-Vac. The eluate containing CK nucleotides was evaporated in the same way to 2-3 mL to remove the ammonia. The CK nucleotides were dephosphorylated to nucleosides by incubation with calf-intestine alkaline phosphatase (Sigma).

The CKs were quantified by HPLC linked to an Ion Trap Mass Spectrometer Finnigan LCQ-equipped with an electrospray interface using a RP column (Phenomenex, AQUA, 2×250 mm). Linear gradient 0 0005% v/v acetic acid in

K. Ananieva et al.

of acetonitrile (B) in 0.0005%, v/v, acetic acid in water (A): 10% B for 5 min, to 17% B in 15 min and to 50% B in 35 min was used at a flow rate of $0.2 \,\mathrm{mL\,min^{-1}}$. Detection and quantification were carried out using a Finnigan LCQ operated in the positive ion, full-scan MS/Ms mode using a multilevel calibration graph with [²H] labeled CKs as internal standards. Each analysis was repeated twice. The results presented here are the mean values of two different experiments.

Results

Chlorophyll content, net photosynthetic rate and photochemical quantum efficiency of photosystem II

To investigate the potential roles of darkness and MeJA in cotyledon senescence, 7-day-old zucchini seedlings grown in the light for 3 days were either transferred to darkness or sprayed with $100\,\mu\text{M}$ MeJA. At this stage, the seedlings had only cotyledons and the primary leaves had just emerged. The progress of senescence acceleration was monitored by the loss of chlorophyll and inhibition of both photosynthetic activity and PSII functional activity. Although no visible vellowing of cotyledons was observed 24h after treatment, total chlorophyll content was decreased following dark and MeJA treatments by 11% and 17%, respectively (Fig. 1). On the other hand, net photosynthetic rate remained unchanged after 24h dark treatment, whereas it was lowered by 27% upon MeJA treatment (Fig. 2). Changes in the F_v/F_m ratio ($F_v = F_m - F_0$) indicate variations in the photochemical quantum efficiency of PSII (Maxwell and Johnson, 2000). Our results showed that neither of the senescence promoting factors investigated induced any changes in PSII functional activity (Fig. 3).

Chloroplast run-on transcription

The senescence promoting effects of both shortterm darkening and MeJA treatment were further studied through the changes in total chloroplast RNA synthesis using intact isolated plastids placed into a hypotonic transcription reaction mixture which caused plastids to lyse (Mullet and Klein, 1987).

Our results from the run-on transcription analyses showed that dark treatment decreased total chloroplast RNA synthesis by 23% whereas MeJA led to a 55% inhibition (Fig. 4). Experiments with

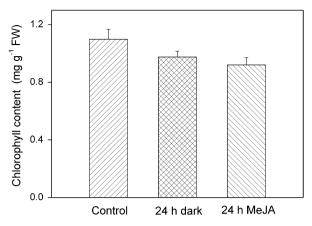


Figure 1. Chlorophyll content in *Cucurbita pepo* (zucchini) cotyledons. Seven-day-old seedlings grown at a 12 h dark/light photoperiod were either transferred to darkness or sprayed with $100 \,\mu$ M MeJA. Measurements were performed 24 h after treatment. Vertical bars indicate SE. FW, fresh weight.

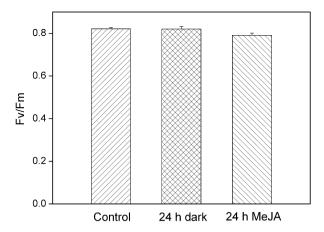
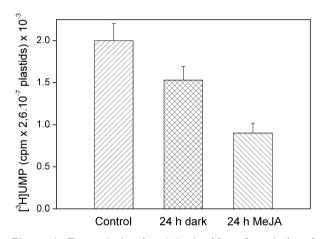


Figure 2. Net photosynthetic rate in *Cucurbita pepo* (zucchini) cotyledons. Seven-day-old seedlings grown at a 12 h dark/light photoperiod were either transferred to darkness or sprayed with 100 μ M MeJA. Measurements were done 24 h after treatment. Net photosynthetic rate was measured with a portable photosynthesis apparatus LI-6400 at quantum flux density of 500 μ mol m⁻² s⁻¹ PAR. Vertical bars indicate SE.


excised cotyledons floated for 24 h on a MeJA solution showed a much more pronounced inhibition of chloroplast RNA synthesis (70%) (data not shown).

Analysis of physiologically active CKs

Using HPLC/MS/MS, we determined the endogenous levels of physiologically active CKs [trans-

Figure 3. Changes in the maximum quantum efficiency of PSII (variable fluorescence (F_v) /maximal fluorescence (F_m) ratio) in *Cucurbita pepo* (zucchini) cotyledons of 7-day-old seedlings after dark and MeJA treatments. All measurements were performed 24h after treatment. Vertical bars indicate SE.

Figure 4. Transcriptional activity in chloroplasts isolated from *Cucurbita pepo* (zucchini) cotyledons. Seven-dayold seedlings grown at a 12 h dark/light photoperiod were either transferred to darkness or sprayed with $100 \,\mu$ M MeJA. Chloroplasts were isolated 24 h after treatment as described in Materials and Methods. The amount of incorporated [³H] UTP in a standard run-on assay with lysed plastids was determined using 2.6×10^7 chloroplasts and 10 min incubation time. Vertical bars indicate SE.

zeatin (Z), dihydrozeatin (DHZ), N⁶-(2-isopentenyl)adenine (iP), *trans*-zeatin 9-riboside (ZR) and N⁶-(2-isopentenyl) adenine 9-riboside (iPR)] as well as of much less active *cis*-zeatin (*cis*-Z) and *cis*zeatin 9-riboside (*cis*-ZR), (Kamínek et al., 1979) (Table 1). The content of total *trans*-zeatins (Z and ZR) decreased after transfer to darkness and MeJA treatment by almost 30% and 80%, respectively. Furthermore, there was a decrease in the total content of physiologically active CKs upon dark and

Cytokinin	8-day-old control	1 d after transfer to darkness	1 d after MeJA treatment
iP	1.2	0.9	0.8
iPR	0.5	ND	0.5
Z	2.9	1.7	0.7
ZR	0.4	0.9	ND
DHZ	0.7	0.8	0.7
cis-Z	0.5	1.6	ND
cis-ZR	1.9	1.9	0.9
Total <i>trans</i> -zeatins	3.3	2.6	0.7
Total cis-zeatins	2.4	3.5	0.9
Trans: cis-zeatins	1.4	0.7	0.8

Table 1. Endogenous levels of physiologically active CKs and *cis*-zeatins ($pmol g^{-1}FW$) in cotyledons of intact *Cucurbita pepo* (zucchini) seedlings grown under 12 h-photoperiod

CKs were determined in cotyledons of 8-d untreated plants (controls) and 1 d after spraying of 7-day-old plants with MeJA (100μ M) or transfer of 7-day-old plants to darkness. CK contents were determined using HPLC/MS/MS as described in Materials and methods. The standard errors (SE) varied within the range of 23–37%. ND, not detected.

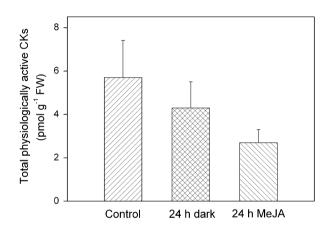


Figure 5. Changes in the content of total physiologically active cytokinins ($pmol g^{-1}FW$) in *Cucurbita pepo* (zucchini) cotyledons of 7-day-old seedlings after dark and MeJA treatments. All measurements were done 24 h after treatment. Cytokinins were determined using HPLC/MS/MS. Vertical bars indicate SE.

MeJA treatments by 25% and 53%, respectively (Fig. 5). This was due mainly to the significant decrease in the content of Z (1.7- and 4-fold decrease following dark and MeJA treatments, respectively). Total cis-zeatins increased after dark treatment, whereas their content decreased due to MeJA application. However, total cis-zeatins (cis-Z and cis-ZR) remained at a higher level (30% higher) compared with trans-zeatins upon both treatments. Thus, both stress factors lowered the trans: cis zeatins ratio by approximately 50% compared with controls (Table 1). A similar trend of decrease in the trans:cis zeatins ratio was observed following incubation of whole zucchini seedlings in the dark for 2 and 5 days (Ananieva et al. 2004a).

Discussion

Photosynthetic parameters such as chlorophyll content, photosynthetic rate and the F_v/F_m ratio are typical senescence-associated physiological markers (Smart, 1994; Oh et al., 1996; Woo et al., 2001; Gan, 2004). Many studies have shown that leaf senescence correlates with a progressive decline in the rate of photosynthesis paralleled by a decrease in Rubisco activity and content (Crafts-Brander et al., 1990; Jiang et al., 1993). The F_v/F_m ratio in fully expanded leaves was found to decrease with progression of leaf senescence (Gan, 2004). On the other hand, no changes were registered in the photochemical efficiency of PSII after 1-d dark treatment of detached leaves of stay-green Arabidopsis mutants, which was followed by a rapid drop observed thereafter till the 5th day of dark incubation (Oh et al., 2003). In the wild type leaves, this decrease did not begin even after 2-d dark treatment. In addition, no changes in the F_v/F_m ratio were observed in young sunflower leaves during senescence induced by moderate KCl stress (Vieira Santos et al., 2001). Our results showing lack of effect of 24h dark treatment on the F_v/F_m ratio in zucchini cotyledons (Fig. 3) are in agreement with the above studies, suggesting that short-term dark treatment is not sufficient to inhibit significantly the functional activity of PSII. Further, darkness did not affect the photosynthetic rate of cotyledons (Fig. 2). Thus, the above two parameters used in our study to quantify senescence could be considered as more stable compared with chlorophyll content, which was found to decrease already after 24h dark treatment of 7-day-old zucchini cotyledons (Fig. 1).

The well-known ability of jasmonates to promote or enhance senescence upon exogenous application is often characterized by loss of chlorophyll, degradation of Rubisco and inhibition of its biosynthesis, decreased rates of transpiration and photosynthesis, up-regulation of several SAGs shown for different plants (Weidhase et al., 1987: Beltrano et al., 1998; Oh et al., 1996; Weaver et al., 1998; He et al., 2001, 2002). In addition, jasmonates can induce disorganization of the thylakoid membrane system of chloroplasts (Ananieva et al., 2004b). Jasmonates can also affect the functional activity of PSII (Woo et al., 2001; He et al., 2002). Consistent with the visible vellowing, the F_v/F_m ratio was shown to decrease markedly in detached young Arabidopsis leaves treated with jasmonic acid (JA) for 4 days under darkness (He et al., 2002). In the present work, we found that spraying of intact 7-day-old zucchini cotyledons with MeJA did not affect the F_v/F_m ratio measured 24h after treatment (Fig. 3). However, photosynthetic rate was found to decrease significantly (Fig. 2). These results indicate that photosynthetic capacity is more susceptible to the MeJA action compared with the functional activity of PSII, thus suggesting a stronger inhibitory effect of jasmonates on Calvin cycle compared with the photoelectron transport reactions chemical of photosynthesis. Recently, we have shown that similar to the F_v/F_m ratio, the actual quantum yield of PSII electron transport in the light-adapted state $(\Phi PSII = (F_{m'} - F)/F_{m'})$ remained also unchanged after both dark and MeJA treatments (Ananieva et al., 2005). Furthermore, no effect was observed in the above parameters even after more acute MeJA treatment when zucchini cotyledons excised from 7-day-old seedlings were incubated for another 24h on MeJA solution (data not shown). The lack of effect of both stress factors on the photochemical efficiency of PSII although chlorophyll content was found to decrease implies the existence of mechanisms protecting the functional activity of PSII at least within the 24 h period of treatment. A study of the senescence processes in attached first foliage leaves of barley has revealed that, in spite of the early decrease in total protein and chlorophyll content, efficiency of remaining photosystem II units stays high for about 3 weeks, followed by a rapid decrease, reaching values close to zero 2 weeks later (Miersch et al., 2000). Therefore, the decreases in chlorophyll content and the functional activity of PSII do not occur simultaneously during senescence which is in agreement with our data. Moreover, our results refer to the relatively short period of 24h treatment and most probably, the expected decrease in PSII efficiency could occur at later stages of the senescence process. Thus, the photochemical efficiency of PSII could be considered as a more stable parameter when compared to others used to quantify senescence.

A study of the responses of the chloroplast transcriptional apparatus in barley primary leaves to 2-d dark incubation has revealed a dramatic decline in the overall chloroplast transcription due mainly to reduced transcript accumulation of a definite group of genes related to photosynthesis (rbcL, psaA,B, atpB) (Krause et al., 1998). Consistent with the above study our results showed that as in leaves, a decline in chloroplast overall transcriptional activity (23%) was observed also in cotyledons of intact zucchini seedlings already after a 24h dark period (Fig. 4). Much stronger was the decline in chloroplast transcription sdetected in the MeJA-treated cotyledons (55%) (Fig. 4). Furthermore, our experiments with excised cotyledons showing even more drastic inhibition of chloroplast RNA synthesis (70%) (data not shown) indicate that chloroplast transcription is a more sensitive senescence-related parameter compared with those related to photosynthesis used in this study to quantify senescence acceleration in response to MeJA treatment. This strong inhibitory effect on chloroplast transcription could be due to the selective inhibition of a definite group of mRNAs related to photosynthesis, thus leading to the decreased photosynthetic rate registered already 24h after MeJA treatment (Fig. 2). The suppression of photosynthesis in the MeJA-treated cotyledons could be also due to the rapid degradation of Rubisco reported for barley leaf segments (Reinbothe et al., 1993a), as well as to the downregulation of genes for nuclear- and plastidencoded chloroplast photosynthetic proteins (e.g. rbcS, lhbCl), thus contributing to the senescencepromoting effect of jasmonates (Reinbothe et al., 1993a, b, 1997).

The inverse correlation between CK levels and the progression of senescence shown in a variety of tissues and plant species represents one of the major lines of evidence supporting an inhibitory role of CKs in leaf senescence (Gan, 2004). Both senescence-promoting factors used in the present study caused a decrease in the content of physiologically active CKs, especially *trans*-Z, the jasmonate effect being much more pronounced when compared with darkness (Table 1, Fig. 5). Thus, based on the results on chlorophyll content changes, net photosynthetic rate and chloroplast transcriptional activity, a conclusion could be drawn that MeJA is a more effective inducer of cotyledon senescence compared with darkness within the relatively short period of 24h treatment. The higher capacity of MeJA to promote cotyledon senescence could be partly due to the stronger reduction in the levels of physiologically active CKs, especially *trans*-Z.

Acknowledgments

The National Science Fund at the Bulgarian Ministry of Education and Science (Grant No. K-1403/2004), NRF, Pretoria, Republic of South Africa and the Grant Agency of the Academy of Sciences of the Czech Republic (Grant No. A600380507) are thanked for financial support.

References

- Ananieva K, Malbeck J, Kamínek M, Van Staden J. Changes in endogenous cytokinin levels in cotyledons of *Cucurbita pepo* (zucchini) during natural and darkinduced senescence. Physiol Plant 2004a;122:133–42.
- Ananieva K, Malbeck J, Kamínek M, Van Staden J. Methyl jasmonate down-regulates endogenous cytokinin levels in cotyledons of *Cucurbita pepo* (zucchini) seedlings. Physiol Plant 2004b;122:496–503.
- Ananieva K, Georgieva K, Tzvetkova N, Petkova S, Ananiev ED. Specific effects of darkness and MeJA treatment on senescence related photosynthetic parameters in intact *Cucurbita pepo* (zucchini) cotyledons. Compt Rend Acad Bulg Sci 2005;58:1433–8.
- Beltrano J, Ronco MG, Montaldi ER, Carbone A. Senescence of flag leaves and ears of wheat hastened by methyl jasmonate. J Plant Growth Regul 1998;17: 53–7.
- Biswal UC, Biswal B. Photocontrol of leaf senescence. Photochem Photobiol 1984;39:875–9.
- Biswal B, Choudhury NK, Sahu P, Biswal UC. Senescence of detached fern leaves. Plant Cell Physiol 1983;24: 1203–8.
- Buchanan-Wollaston V. The molecular biology of leaf senescence. J Exp Bot 1997;48:181–99.
- Crafts-Brander SJ, Salvucci ME, Egli DB. Changes in ribulosebiphosphate carboxylase/oxygenase and ribulose 5-phosphate kinase abundances and photosynthetic capacity during leaf senescence. Photosynth Res 1990;23:223–30.
- Creelman RA, Mullet JE. Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 1997;48:355–81.
- Deng XW, Gruissem W. Chloroplast run-on transcription. In: Methods in plant molecular biology. Plainview, NY: Cold Spring Harbor Laboratory Press; 1995. p. 191–207.
- Dobrev PI, Kamínek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 2002;950:21–9.

- Gan S. The hormonal regulation of senescence. In: Davies PJ, editor. Plant hormones: biosynthesis, signal transduction and action!. Dordrecht: Kluwer Academic Publishers; 2004. p. 561–81.
- Gan S, Amasino RM. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 1995;270:1966–70.
- Gan S, Amasino RM. Cytokinins in plant senescence: from spray and pray to clone and play. Bio Essays 1996;18: 557–65.
- Hallick R, Lipper C, Richards O, Rutter W. Isolation of a transcriptionally active chromosome from chloroplasts of Euglena gracilis. Biochemistry 1976;15:3039–45.
- Harms K, Atzorn R, Brash A, Kühn H, Wasternack C, Willmitzer L, et al. Expression of a flax allene oxide synthase cDNA leads to increased endogenous jasmonic acid (JA) levels in transgenic potato plants but not to a corresponding activation of JA-responding genes. Plant Cell 1995;7:1645–54.
- He Y, Tang W, Swain JD, Green AL, Jack TP, Gan S. Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol 2001;126:707–16.
- He Y, Fukushige H, Hildebrand DF, Gan S. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 2002;128:876–84.
- Inskeep WP, Bloom PR. Extinction coefficients of chlorophyll *a* and *b* in *N*,*N*-dimethylformamide and 80% acetone. Plant Physiol 1985;77:483–5.
- Jiang CZ, Rodermel SR, Shibles RM. Photosynthesis, Rubisco activity and amount, and their regulation by transcription in senescing soybean leaves. Plant Physiol 1993;101:105–12.
- Jordi W, Schapendonk A, Davelaar E, Stoopen GM, Pot CS, De Visser R, et al. Increased cytokinin levels in transgenic P_{SAG12} -*IPT* tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning. Plant Cell Environ 2000;23: 279–89.
- Kamínek M, Pačes V, Corse J, Challice JSD. The effect of stereospecific hydroxylation of N⁶- $(\Delta^2$ -isopentenyl)adenosine on cytokinin activity. Planta 1979;145: 239–45.
- Krause K, Falk J, Humbeck K, Krupinska K. Responses of the transcriptional apparatus of barley chloroplasts to a prolonged dark period and to subsequent reillumination. Physiolog Plantarum 1998;104:143–52.
- Maxwell K, Johnson GN. Chlorophyll fluorescence—a practical guide. J Exp Bot 2000;51:659–68.
- Miersch I, Heise J, Zelmer I, Humbeck K. Differential degradation of the photosynthetic apparatus during leaf senescence in barley (*Hordeum vulgare* L.). Plant Biol 2000;2:618–23.
- Moran R, Porath D. Chlorophyll determination in intact tissues using *N*, *N*-dimethylformamide. Plant Physiol 1980;65:478–9.
- Mullet JE, Klein RR. Transcription and RNA stability are important determinants of higher plant chloroplast RNA levels. EMBO J 1987;6:1571–9.

- Nam HG. Molecular genetic analysis of leaf senescence. Curr Opin Biotechnol 1997;8:200–7.
- Noodén LD. The phenomena of senescence and aging. In: Noodén LD, Leopold AC, editors. Senescence and aging in plants. San Diego: Academic Press; 1988. p. 1–50.
- Noodén LD, Letham DS. Cytokinin metabolism and signalling in the soybean plant. Aust J Plant Physiol 1993;20:639–53.
- Oh SA, Lee SY, Chung IK, Lee CH, Nam HG. A senescenceassociated gene of *Arabidopsis thaliana* is distinctively regulated during natural and artificially induced leaf senescence. Plant Mol Biol 1996;30:739–54.
- Oh M-H, Moon Y-H, Lee Ch-H. Increased stability of LHCII by aggregate formation during dark-induced leaf senescence in the *Arabidopsis* mutant, *ore10*. Plant Cell Physiol 2003;44:1368–77.
- Pontier D, Gan S, Amasino RM, Roby D, Lam E. Markers for hypersensitive response and senescence show distinct patterns of expression. Plant Mol Biol 1999;39: 1243–55.
- Reinbothe S, Reinbothe C, Parthier B. Methyl jasmonate represses translation initiation of a specific set of mRNAs in barley. Plant J 1993a;4:459–67.
- Reinbothe S, Reinbothe C, Parthier B. Methyl-jasmonate regulated translation of nuclear-encoded chloroplast proteins in barley. J Biol Chem 1993b;268:10606–11.
- Reinbothe C, Parthier B, Reinbothe S. Temporal pattern of jasmonate-induced alterations in gene expression of barley leaves. Planta 1997;201:281–7.
- Smart CM. Gene expression during leaf senescence. New Phytol 1994;126:419–48.
- Smart CM, Scofield SR, Bevan MW, Dyer TA. Delayed leaf senescence in tobacco plants transformed with *tmr*, a

gene for cytokinin production in *Agrobacterium*. Plant Cell 1991;3:647–56.

- Van Staden J, Cook EL, Nooden LD. Cytokinins and senescence. In: Nooden LD, Leopold AC, editors. Senescence and aging in plants. San Diego: Academic Press; 1988. p. 281–328.
- Vieira Santos CL, Campos A, Azevedo H, Caldeira G. In situ and in vitro senescence induced by KCl stress: nutritional imbalance, lipid peroxidation and antioxidant metabolism. J Exp Bot 2001;52:351–60.
- Wasternack C, Hause B. Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucl Acid Res Mol Biol 2002;72:165–221.
- Weaver LM, Amasino RM. Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants. Plant Physiol 2001; 127:876–86.
- Weaver LM, Gan S, Quirino B, Amasino RM. A comparison of the expression patterns of several senescenceassociated genes in response to stress and hormone treatments. Plant Mol Biol 1998;37:455–69.
- Weidhase RA, Lehmann J, Kramell H, Sembdner G, Partier B. Degradation of ribulose-1, 5-biphosphate carboxylase and chlorophyll in senescing barley leaf segments triggered by jasmonic acid methylester, and counteraction by cytokinin. Physiol Plant 1987;69: 161–6.
- Woo HR, Chung KM, Park J-H, Oh SA, Taejin T, Hong SH, et al. ORE9, an F-Box protein that regulates leaf senescence in Arabidopsis. Plant Cell 2001;13: 1779–90.
- Yamagishi M, Yamamoto Y. Effect of boron on nodule development and symbiotic nitrogen fixation in soybean plants. Soil Sci Plant Nutr 1994;40:265–74.